%I
%S 1,1212751,977965238701,788633124418157851,635955328796073362530201,
%T 512835649051022518566661395751,413551693065406705688396809494274501,
%U 333488912390817262631483541451235285166451,268926125929366270527488184087670639619302551601
%N Numbers which are both 9gonal (nonagonal) and 10gonal (decagonal).
%C As n increases, this sequence is approximately geometric with common ratio r = lim(n>Infinity, a(n)/a(n1)) = (2*sqrt(2)+sqrt(7))^8 = 403201+107760*sqrt(14).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (806403, 806403, 1).
%F G.f.: x*(1+406348*x+451*x^2) / ((1x)*(1806402*x+x^2)).
%F a(n) = 806402*a(n1)a(n2)+406800.
%F a(n) = 806403*a(n1)806403*a(n2)+a(n3).
%F a(n) = 1/448*((15+2*sqrt(14))*(2*sqrt(2)+sqrt(7))^(8*n6)+(152*sqrt(14))*(2*sqrt(2)sqrt(7))^(8*n6)226).
%F a(n) = floor(1/448*(15+2*sqrt(14))*(2*sqrt(2)+sqrt(7))^(8*n6)).
%e The second number that is both nonagonal and decagonal is A001106(589) = A001107(551) = 1212751. Hence a(2) = 1212751.
%t LinearRecurrence[{806403, 806403, 1}, {1, 1212751, 977965238701}, 9]
%Y Cf. A203628, A203629, A001107, A001106.
%K nonn,easy
%O 1,2
%A _Ant King_, Jan 06 2012
