login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203618 Solutions of (n'+1)' = n-1, where n' is the arithmetic derivative of n. 3
1, 2, 6, 42, 104, 120, 165, 245, 272, 561, 1806, 47058, 765625, 1137501, 3874128, 9131793, 2214502422, 52495396602 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The differential equation whose solutions are the primary pseudoperfect numbers is n’ = k*n-1, with k positive integer. Let us rewrite the equation as n’+1 = k*n and then take the derivative: (n’+1)' = (k*n)’ = k’*n + k*n’ = k’*n + k*(k*n-1) = (k’+k^2)*n-k. Let k=1: (n’+1)’ = n-1. The solutions of this equation are the primary pseudoperfect numbers plus couples of numbers (x,y) for which x’ = y-1 and y’ = x-1.

A054377 is a subset of this sequence.

a(17) > 10^9. - Michel Marcus, Nov 05 2014

a(19) > 10^11. - Giovanni Resta, Jun 04 2016

LINKS

Table of n, a(n) for n=1..18.

EXAMPLE

n=765625. 765625’=1137500; (1137500+1)’=1137501’=765624=765625-1.

n=1137501. 1137501’=765624; (765624+1)’=765625’=1137500=1137501-1.

MAPLE

with(numtheory);

P:=proc(i)

local a, n, p, pfs;

for n from 1 to i do

  pfs:=ifactors(n)[2]; a:=n*add(op(2, p)/op(1, p), p=pfs);

  pfs:=ifactors(a+1)[2]; a:=(a+1)*add(op(2, p)/op(1, p), p=pfs);

  if a=n-1 then print(n); fi;

od;

end:

P(10000000);

MATHEMATICA

A003415[n_]:=If[Abs[n]<2, 0, n*Total[#2/#1&@@@FactorInteger[Abs[n]]]];

Select[Range[1, 100000], A003415[A003415[#]+1]==#-1&] (* Julien Kluge, Jul 08 2016 *)

PROG

(PARI) ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);

isok(n) = ad(ad(n)+1) == n-1; \\ Michel Marcus, Nov 05 2014

CROSSREFS

Cf. A054377, A203617.

Sequence in context: A280043 A309813 A033936 * A098814 A272177 A156437

Adjacent sequences:  A203615 A203616 A203617 * A203619 A203620 A203621

KEYWORD

nonn,more

AUTHOR

Paolo P. Lava, Jan 20 2012

EXTENSIONS

a(17)-a(18) from Giovanni Resta, Jun 04 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 17:00 EST 2020. Contains 332209 sequences. (Running on oeis4.)