This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203577 Exponential (or binomial) half-convolution of the sequence A000108 (Catalan) with itself. 2
 1, 1, 4, 11, 58, 212, 1304, 5567, 37734, 178148, 1284124, 6501420, 48758648, 259775440, 2000594288, 11080668871, 86930955662, 496461841956, 3947716126292, 23113333523180, 185660199980696, 1109722749130576, 8983793097101144, 54645629076275356, 445109373450545608, 2748480598104423952 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For the definition of the exponential (also known as binomial) half-convolution of a sequence with itself see A203576, where also the rule for the e.g.f. is given. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = sum(binomial(n,k)*Catalan(k)*Catalan(n-k), k=0..floor(n/2)), n>=0. E.g.f.: (C(x)^2 + C2(x^2))/2 with the e.g.f. C(x) of A000108, and the e.g.f. C2(x):=sum(Catalan(n)^2/n!*x^n/n!,n=0..infty) of the scaled Catalan squares. See a comment above.   C(x) = hypergeom([1/2],[2],4*x) (see A000108 for the version involving BesselI functions), and   C2(x) = hypergeom([1/2,1/2],[1,2,2],16*x). Recurrence: n*(n+1)^2 * (n+2)^2 * (3*n^6 - 39*n^5 + 166*n^4 - 322*n^3 + 316*n^2 - 153*n + 27)*a(n) = 12*(n-1)*n*(n+1)^2 * (3*n^7 - 34*n^6 + 113*n^5 - 121*n^4 - 19*n^3 + 68*n^2 + 17*n - 18)*a(n-1) + 32*(3*n^11 - 45*n^10 + 220*n^9 - 448*n^8 + 173*n^7 + 920*n^6 - 1696*n^5 + 842*n^4 + 580*n^3 - 846*n^2 + 360*n - 54)*a(n-2) - 768*(n-2)^3 * n *(3*n^7 - 34*n^6 + 113*n^5 - 121*n^4 - 19*n^3 + 68*n^2 + 17*n - 18)*a(n-3) + 2048*(n-3)^3 * (n-2)^2 * (3*n^6 - 21*n^5 + 16*n^4 + 12*n^3 + n^2 - 2)*a(n-4). - Vaclav Kotesovec, Feb 25 2014 a(n) ~ 2^(3*n+2)/(Pi*n^3) * (1 + (1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 25 2014 EXAMPLE With Catalan = A000108 = {1, 1, 2, 5, 14, 42,... } a(4)= 1*1*14 + 4*1*5 + 6*2*2 = 58. a(5)= 1*1*42 + 5*1*14 + 10*2*5 = 212.. MATHEMATICA a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k]*CatalanNumber[n - k], {k, 0, n/2}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 21 2013 *) PROG (PARI) hat(b, n) = sum(k=0, n\2, binomial(n, k)*b(k)*b(n-k)) A203577(n)=hat(A000108, n)  \\ where A000108(n)=(2*n)!/n!/(n+1)! \\ - M. F. Hasler, Jan 13 2012 CROSSREFS Cf. A203576, A000108, A014330 (exponential convolution). Sequence in context: A209110 A282742 A032181 * A081073 A245545 A002831 Adjacent sequences:  A203574 A203575 A203576 * A203578 A203579 A203580 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jan 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 18:13 EST 2019. Contains 320437 sequences. (Running on oeis4.)