login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203577 Exponential (or binomial) half-convolution of the sequence A000108 (Catalan) with itself. 2
1, 1, 4, 11, 58, 212, 1304, 5567, 37734, 178148, 1284124, 6501420, 48758648, 259775440, 2000594288, 11080668871, 86930955662, 496461841956, 3947716126292, 23113333523180, 185660199980696, 1109722749130576, 8983793097101144, 54645629076275356, 445109373450545608, 2748480598104423952 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For the definition of the exponential (also known as binomial) half-convolution of a sequence with itself see A203576, where also the rule for the e.g.f. is given.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = sum(binomial(n,k)*Catalan(k)*Catalan(n-k), k=0..floor(n/2)), n>=0.

E.g.f.: (C(x)^2 + C2(x^2))/2 with the e.g.f. C(x) of A000108, and the e.g.f. C2(x):=sum(Catalan(n)^2/n!*x^n/n!,n=0..infty) of the scaled Catalan squares. See a comment above.

  C(x) = hypergeom([1/2],[2],4*x) (see A000108 for the version involving BesselI functions), and

  C2(x) = hypergeom([1/2,1/2],[1,2,2],16*x).

Recurrence: n*(n+1)^2 * (n+2)^2 * (3*n^6 - 39*n^5 + 166*n^4 - 322*n^3 + 316*n^2 - 153*n + 27)*a(n) = 12*(n-1)*n*(n+1)^2 * (3*n^7 - 34*n^6 + 113*n^5 - 121*n^4 - 19*n^3 + 68*n^2 + 17*n - 18)*a(n-1) + 32*(3*n^11 - 45*n^10 + 220*n^9 - 448*n^8 + 173*n^7 + 920*n^6 - 1696*n^5 + 842*n^4 + 580*n^3 - 846*n^2 + 360*n - 54)*a(n-2) - 768*(n-2)^3 * n *(3*n^7 - 34*n^6 + 113*n^5 - 121*n^4 - 19*n^3 + 68*n^2 + 17*n - 18)*a(n-3) + 2048*(n-3)^3 * (n-2)^2 * (3*n^6 - 21*n^5 + 16*n^4 + 12*n^3 + n^2 - 2)*a(n-4). - Vaclav Kotesovec, Feb 25 2014

a(n) ~ 2^(3*n+2)/(Pi*n^3) * (1 + (1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 25 2014

EXAMPLE

With Catalan = A000108 = {1, 1, 2, 5, 14, 42,... }

a(4)= 1*1*14 + 4*1*5 + 6*2*2 = 58.

a(5)= 1*1*42 + 5*1*14 + 10*2*5 = 212..

MATHEMATICA

a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k]*CatalanNumber[n - k], {k, 0, n/2}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 21 2013 *)

PROG

(PARI) hat(b, n) = sum(k=0, n\2, binomial(n, k)*b(k)*b(n-k))

A203577(n)=hat(A000108, n)  \\ where A000108(n)=(2*n)!/n!/(n+1)! \\ - M. F. Hasler, Jan 13 2012

CROSSREFS

Cf. A203576, A000108, A014330 (exponential convolution).

Sequence in context: A262006 A209110 A032181 * A081073 A245545 A002831

Adjacent sequences:  A203574 A203575 A203576 * A203578 A203579 A203580

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jan 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 19:19 EST 2016. Contains 278770 sequences.