login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203552 a(n) = n*(5*n^2 - 3*n + 4) / 6. 2
0, 1, 6, 20, 48, 95, 166, 266, 400, 573, 790, 1056, 1376, 1755, 2198, 2710, 3296, 3961, 4710, 5548, 6480, 7511, 8646, 9890, 11248, 12725, 14326, 16056, 17920, 19923, 22070, 24366, 26816, 29425, 32198, 35140, 38256, 41551, 45030, 48698 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = Sum_{k = 1..n} A(k-1, n-k) where A(i, j) = i^2 + i*j + j^2 + i + j + 1.

G.f.: x * (1 + 2*x + 2*x^2) / (1 - x)^4.

a( n) = -A203551(-n) for all n in Z.

a(n)-a(n-1) = A134238(n). - Bruno Berselli, Jan 03 2012

a(n) = 4*A000125(n) + 2*A000125(n+1) - A000125(n+3). - Ivan N. Ianakiev, Aug 21 2013

E.g.f.: x*(5*x^2 + 12*x + 6)*exp(x)/6. - G. C. Greubel, Aug 12 2018

EXAMPLE

G.f. = x + 6*x^2 + 20*x^3 + 48*x^4 + 95*x^5 + 166*x^6 + 266*x^7 + 400*x^8 + ...

MATHEMATICA

LinearRecurrence[{4, -6, 4, -1}, {0, 1, 6, 20}, 40] (* Vincenzo Librandi, Jan 07 2012 *)

PROG

(PARI) {a(n) = n * (5*n^2 - 3*n + 4) / 6};

(MAGMA) I:=[0, 1, 6, 20]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 07 2012

CROSSREFS

Cf. A203551.

Sequence in context: A005564 A011928 A055455 * A050768 A161438 A063488

Adjacent sequences:  A203549 A203550 A203551 * A203553 A203554 A203555

KEYWORD

nonn,easy

AUTHOR

Michael Somos, Jan 02 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 04:37 EDT 2018. Contains 316378 sequences. (Running on oeis4.)