login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203552 a(n) = n*(5*n^2 - 3*n + 4) / 6. 2
0, 1, 6, 20, 48, 95, 166, 266, 400, 573, 790, 1056, 1376, 1755, 2198, 2710, 3296, 3961, 4710, 5548, 6480, 7511, 8646, 9890, 11248, 12725, 14326, 16056, 17920, 19923, 22070, 24366, 26816, 29425, 32198, 35140, 38256, 41551, 45030, 48698 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = Sum_{k = 1..n} A(k-1, n-k) where A(i, j) = i^2 + i*j + j^2 + i + j + 1.

G.f.: x * (1 + 2*x + 2*x^2) / (1 - x)^4.

a( n) = -A203551(-n) for all n in Z.

a(n)-a(n-1) = A134238(n). - Bruno Berselli, Jan 03 2012

a(n) = 4*A000125(n) + 2*A000125(n+1) - A000125(n+3). - Ivan N. Ianakiev, Aug 21 2013

E.g.f.: x*(5*x^2 + 12*x + 6)*exp(x)/6. - G. C. Greubel, Aug 12 2018

EXAMPLE

G.f. = x + 6*x^2 + 20*x^3 + 48*x^4 + 95*x^5 + 166*x^6 + 266*x^7 + 400*x^8 + ...

MATHEMATICA

LinearRecurrence[{4, -6, 4, -1}, {0, 1, 6, 20}, 40] (* Vincenzo Librandi, Jan 07 2012 *)

PROG

(PARI) {a(n) = n * (5*n^2 - 3*n + 4) / 6};

(MAGMA) I:=[0, 1, 6, 20]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 07 2012

CROSSREFS

Cf. A203551.

Sequence in context: A005564 A011928 A055455 * A050768 A161438 A063488

Adjacent sequences:  A203549 A203550 A203551 * A203553 A203554 A203555

KEYWORD

nonn,easy

AUTHOR

Michael Somos, Jan 02 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)