The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203527 a(n) = Product_{1 <= i < j <= n} (A018252(i) + A018252(j)); A018252 = nonprime numbers. 5
 1, 5, 350, 529200, 17542980000, 14783258730240000, 511420331138811494400000, 871980665589501641034301440000000, 60150685659205753788492548338089984000000000, 182771197941564481989784945231570147139911680000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Each term divides its successor, as in A203528. It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n); as in A203529. See A093883 for a guide to related sequences. LINKS MAPLE b:= proc(n) option remember; local k; if n=1 then 1       else for k from 1+b(n-1) while isprime(k) do od; k fi     end: a:= n-> mul(mul(b(i)+b(j), i=1..j-1), j=2..n): seq(a(n), n=1..10);  # Alois P. Heinz, Jul 23 2017 MATHEMATICA t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}]; nonprime = Rest[Union[t]]              (* A018252 *) f[j_] := nonprime[[j]]; z = 20; v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}] d[n_] := Product[(i - 1)!, {i, 1, n}]  (* A000178 *) Table[v[n], {n, 1, z}]                 (* A203527 *) Table[v[n + 1]/v[n], {n, 1, z - 1}]    (* A203528 *) Table[v[n]/d[n], {n, 1, 20}]           (* A203529 *) CROSSREFS Cf. A018252, A203415, A203528, A203529. Sequence in context: A210820 A193806 A158105 * A235725 A332135 A225578 Adjacent sequences:  A203524 A203525 A203526 * A203528 A203529 A203530 KEYWORD nonn AUTHOR Clark Kimberling, Jan 03 2012 EXTENSIONS Name edited by Alois P. Heinz, Jul 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 07:56 EDT 2020. Contains 334585 sequences. (Running on oeis4.)