login
a(n) = A203482(n) / A000178(n).
3

%I #24 Feb 24 2024 22:04:34

%S 1,3,84,273000,3046699656000,5996663814749677445376000,

%T 160771799453017261771769947549079938007040000,

%U 6351968589735888467306807912855132014808202373395298410963148996608000000

%N a(n) = A203482(n) / A000178(n).

%C It is conjectured that every term of the sequence is an integer.

%H G. C. Greubel, <a href="/A203510/b203510.txt">Table of n, a(n) for n = 1..16</a>

%F a(n) ~ c * A * n^(n^3/3 - n^2/4 - 7*n/12 + 17/24) * (2*Pi)^(n^2/4 - 3*n/4) / exp(4*n^3/9 - 7*n^2/8 - n + 1/12), where A is the Glaisher-Kinkelin constant A074962 and c = 0.488888619502150098591650327163991582267254151817880403495924251381414248582... (from A203482). - _Vaclav Kotesovec_, Nov 20 2023

%t f[j_] := j!; z = 10;

%t v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]

%t d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)

%t Table[v[n], {n, 1, z}] (* A203482 *)

%t Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203483 *)

%t Table[v[n]/d[n], {n, 1, 10}] (* this sequence *)

%t Table[Product[j! + k!, {j, 1, n}, {k, 1, j-1}] / BarnesG[n+1], {n, 1, 10}] (* _Vaclav Kotesovec_, Nov 20 2023 *)

%o (Magma)

%o BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;

%o A203510:= func< n | n eq 1 select 1 else (&*[(&*[Factorial(j) + Factorial(k): k in [1..j-1]]): j in [2..n]])/BarnesG(n+1) >;

%o [A203510(n): n in [1..13]]; // _G. C. Greubel_, Feb 24 2024

%o (SageMath)

%o def BarnesG(n): return product(factorial(j) for j in range(1,n-1))

%o def A203510(n): return product(product(factorial(j)+factorial(k) for k in range(1,j)) for j in range(1,n+1))/BarnesG(n+1)

%o [A203510(n) for n in range(1,14)] # _G. C. Greubel_, Feb 24 2024

%Y Cf. A000142, A000178, A074962, A093883, A203482, A203483.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 03 2012