login
a(n) = Product_{1 <= i < j <= n} (i! + j!).
5

%I #25 Nov 20 2023 11:27:25

%S 1,3,168,3276000,877449500928000,207244701437748852512194560000,

%T 4000516840149319128119305958853265913416777728000000,

%U 796608816253064941944831363792070377592412324940256242675178274726476775424000000000

%N a(n) = Product_{1 <= i < j <= n} (i! + j!).

%C Each term divides its successor, as in A203483.

%C See A093883 for a guide to related sequences.

%H G. C. Greubel, <a href="/A203482/b203482.txt">Table of n, a(n) for n = 1..16</a>

%F a(n) ~ c * n^(n^3/3 + n^2/4 - 7*n/12 + 5/8) * (2*Pi)^(n*(n-1)/4) / exp(4*n^3/9 - n^2/8 - n), where c = 0.488888619502150098591650327163991582267254151817880403495924251381414248582... - _Vaclav Kotesovec_, Nov 20 2023

%p a:= n-> mul(mul(i!+j!, i=1..j-1), j=2..n):

%p seq(a(n), n=1..10); # _Alois P. Heinz_, Jul 23 2017

%t (* First program *)

%t f[j_]:= j!; z = 10;

%t v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}]

%t d[n_]:= Product[(i-1)!, {i, n}] (* A000178 *)

%t Table[v[n], {n, z}] (* A203482 *)

%t Table[v[n+1]/v[n], {n, z-1}] (* A203483 *)

%t Table[v[n]/d[n], {n, 10}] (* A203510 *)

%t (* Second program *)

%t Table[Product[j!+k!, {j,n}, {k,j-1}], {n,15}] (* _G. C. Greubel_, Aug 29 2023 *)

%o (Magma) [(&*[(&*[Factorial(j) + Factorial(k): k in [1..j]])/(2*Factorial(j)): j in [1..n]]): n in [1..20]]; // _G. C. Greubel_, Aug 29 2023

%o (SageMath) [product(product(factorial(j) + factorial(k) for k in range(1,j)) for j in range(1,n+1)) for n in range(1,16)] # _G. C. Greubel_, Aug 29 2023

%Y Cf. A000142, A203483, A203510, A306729, A325052.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 03 2012

%E Name edited by _Alois P. Heinz_, Jul 23 2017