OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..55
FORMULA
a(n) = Product_{i=1..n} binomial(2n-i,i). - Enrique Pérez Herrero, Feb 20 2013
From G. C. Greubel, Aug 29 2023: (Start)
a(n) = (2^n/sqrt(Pi))^n*BarnesG(n+3/2)/(BarnesG(n+2)*BarnesG(3/2)).
a(n) = (n!/2^(n-1))*Product_{j=1..n-1} Catalan(j). (End)
a(n) ~ A^(3/2) * exp(n/2 - 1/8) * 2^(n^2 - 7/24) / (Pi^(n/2 + 1/2) * n^(n/2 + 3/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 26 2023
MATHEMATICA
(* First program *)
f[j_]:= j; z = 16;
v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}]
Table[v[n], {n, z}] (* A093883 *)
Table[v[n+1]/v[n], {n, z-1}] (* A006963 *)
Table[v[n]/d[n], {n, 20}] (* A203469 *)
(* Second program *)
Table[Product[Binomial[2*n-j, j], {j, n}], {n, 20}] (* G. C. Greubel, Aug 29 2023 *)
PROG
(Magma) [(&*[Binomial(2*n-k, k): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
(SageMath) [product(binomial(2*n-j, j) for j in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 02 2012
STATUS
approved