login
A203466
a(n) = A203306(n)/A000178(n) where A000178 are superfactorials.
1
1, 1, 10, 15180, 97199847360, 124679879327832253286400, 2359315315713931476611812172370616909824000, 69427548091550819116702789435220590352184299509517898727953530880000000
OFFSET
1,3
LINKS
R. Chapman, A polynomial taking integer values, Mathematics Magazine, 29 (1996), 121.
MATHEMATICA
f[j_]:= j!; z = 10;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}]
Table[v[n], {n, z}] (* A203306 *)
Table[v[n]/d[n], {n, z}] (* A203466 *)
PROG
(Magma) F:= Factorial; [1] cat [(&*[(&*[F(k+1) - F(j): j in [1..k]])/Factorial(k): k in [1..n-1]]): n in [2..20]]; // G. C. Greubel, Sep 19 2023
(SageMath) f=factorial; [product(product(f(k+1) - f(j) for j in range(1, k+1))//factorial(k) for k in range(1, n)) for n in range(1, 21)] # G. C. Greubel, Sep 19 2023
CROSSREFS
Cf. A203306.
Sequence in context: A190946 A052498 A179425 * A203695 A181017 A360213
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 02 2012
EXTENSIONS
Name edited by Michel Marcus, May 17 2019
STATUS
approved