login
Where Golay-Rudin-Shapiro sequence A020985 is positive.
3

%I #27 Feb 12 2023 03:09:23

%S 0,1,2,4,5,7,8,9,10,14,16,17,18,20,21,23,27,28,29,31,32,33,34,36,37,

%T 39,40,41,42,46,51,54,56,57,58,62,64,65,66,68,69,71,72,73,74,78,80,81,

%U 82,84,85,87,91,92,93,95,99,102,107,108,109,111,112,113,114

%N Where Golay-Rudin-Shapiro sequence A020985 is positive.

%C A020985(a(n)) = 1.

%C Or numbers n for which numbers of 1's and runs of 1's in binary representation have the same parity: A010060(n)=A268411(n). - _Vladimir Shevelev_, Feb 10 2016

%H Reinhard Zumkeller, <a href="/A203463/b203463.txt">Table of n, a(n) for n = 1..10000</a>

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1603.04434">Two analogs of Thue-Morse sequence</a>, arXiv:1603.04434 [math.NT], 2016.

%t GRS = Table[RudinShapiro[n], {n, 0, 200}];

%t Position[GRS, _?Positive] - 1 // Flatten (* _Jean-François Alcover_, Dec 11 2018 *)

%o (Haskell)

%o import Data.List (elemIndices)

%o a203463 n = a203463_list !! (n-1)

%o a203463_list = elemIndices 1 a020985_list

%o (Python)

%o from itertools import count, islice

%o def A203463_gen(startvalue=0): # generator of terms >= startvalue

%o return filter(lambda n:(n&(n>>1)).bit_count()&1^1,count(max(startvalue,0)))

%o A203463_list = list(islice(A203463_gen(),30)) # _Chai Wah Wu_, Feb 11 2023

%Y Cf. A022155 (complement), A020985.

%K nonn

%O 1,3

%A _Reinhard Zumkeller_, Jan 02 2012