OFFSET
0,3
COMMENTS
Note: 1/(1-x-x^2) = exp(Sum_{n>=1} Lucas(n)*x^n/n) is the g.f. of the Fibonacci numbers.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..200
FORMULA
G.f.: exp( Sum_{n>=1} A203319(n)*x^n/n ) where A203319(n) = n*fibonacci(n)*Sum_{d|n} 1/(d*fibonacci(d)).
G.f.: exp( Sum_{n>=1} (x^n/n) / (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) ) where Lucas(n) = A000032(n).
G.f.: exp( Sum_{n>=1} F_n(x^n) * x^n/n ) such that F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where F(x) = 1/(1-x-x^2) and u is an n-th root of unity.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 36*x^6 + 64*x^7 +...
G.f.: A(x) = exp( Sum_{n>=1} F_n(x^n) * x^n/n )
where F_n(x) = exp( Sum_{k>=1} Lucas(n*k)*x^k/k ), which begin:
F_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 13*x^6 + 21*x^7 +...;
F_2(x) = 1 + 3*x + 8*x^2 + 21*x^3 + 55*x^4 + 144*x^5 + 377*x^6 +...;
F_3(x) = 1 + 4*x + 17*x^2 + 72*x^3 + 305*x^4 + 1292*x^5 + 5473*x^6 +...;
F_4(x) = 1 + 7*x + 48*x^2 + 329*x^3 + 2255*x^4 + 15456*x^5 +...;
F_5(x) = 1 + 11*x + 122*x^2 + 1353*x^3 + 15005*x^4 + 166408*x^5 +...;
F_6(x) = 1 + 18*x + 323*x^2 + 5796*x^3 + 104005*x^4 + 1866294*x^5 +...;
...
Also, F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where u = n-th root of unity:
F_1(x) = F(x) = 1/(1-x-x^2) = g.f. of the Fibonacci numbers;
F_2(x^2) = F(x)*F(-x) = 1/(1-3*x^2+x^4);
F_3(x^3) = F(x)*F(w*x)*F(w^2*x) = 1/(1-4*x^3-x^6) where w = exp(2*Pi*I/3);
F_4(x^4) = F(x)*F(I*x)*F(-x)*F(-I*x) = 1/(1-7*x^4+x^8);
F_5(x^5) = 1/(1-11*x^5-x^10);
In general,
F_n(x^n) = 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).
...
The logarithmic derivative of this sequence begins:
A203319 = [1,3,7,19,26,81,92,267,358,848,980,3061,3030,7976,...].
PROG
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(exp(sum(m=1, n+1, (x^m/m)/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n)))), n)}
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(L=vector(n+1, i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor((n+1)/m), Lucas(m*k)*x^(m*k)/k)+x*O(x^n))))); polcoeff(exp(x*Ser(vector(n+1, m, L[m]/m))), n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n), F=1/(1-x-x^2+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(F, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2011
STATUS
approved