login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203311 Vandermonde determinant of (1,2,3,...,F(n+1)), where F=A000045 (Fibonacci numbers). 5
1, 1, 2, 48, 30240, 1596672000, 18172937502720000, 122457316443772566896640000, 1284319496829094129116119090331648000000, 55603466527142141932748234118927499493985767915520000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Each term divides its successor, as in A123741. Each term is divisible by the corresponding superfactorial, A000178(n), as in A203313.

For a signed version, see A123742. For a guide to related sequences, including sequences of Vandermonde permanents, see A093883.

LINKS

Table of n, a(n) for n=1..10.

EXAMPLE

v(4) = (2-1)(3-1)(3-2)(5-1)(5-2)(5-3).

MAPLE

with(LinearAlgebra): F:= combinat[fibonacci]:

a:= n-> Determinant(VandermondeMatrix([F(i)$i=2..n+1])):

seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017

MATHEMATICA

f[j_] := Fibonacci[j + 1]; z = 15;

v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]

d[n_] := Product[(i - 1)!, {i, 1, n}]

Table[v[n], {n, 1, z}]                (* A203311 *)

Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A123741 *)

Table[v[n]/d[n], {n, 1, 13}]          (* A203313 *)

PROG

(Python)

from sympy import fibonacci, factorial

from operator import mul

def f(j): return fibonacci(j + 1)

def v(n): return 1 if n==1 else reduce(mul, [reduce(mul, [f(k) - f(j) for j in xrange(1, k)]) for k in xrange(2, n + 1)])

print map(v, xrange(1, 16)) # Indranil Ghosh, Jul 26 2017

CROSSREFS

Cf. A000045, A123741, A123742, A203313, A203518.

Sequence in context: A090770 A081960 A123742 * A295177 A098694 A137592

Adjacent sequences:  A203308 A203309 A203310 * A203312 A203313 A203314

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jan 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 06:06 EST 2019. Contains 329217 sequences. (Running on oeis4.)