OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..29
FORMULA
a(n) ~ (2*Pi)^(n/2) * n^(n*(2*n + 3)/2) / exp(n^2 - 13/12). - Vaclav Kotesovec, Jan 25 2019
a(n) = Product_{j=1..n} ((n+1)! - j!). - G. C. Greubel, Aug 30 2023
MATHEMATICA
(* First program *)
f[j_]:= j!; z = 10;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
Table[v[n], {n, 0, z}] (* A203306 *)
Table[v[n+1]/v[n], {n, 0, z}] (* A203308 *)
(* Second program *)
Table[Product[(n+1)! - k!, {k, n}], {n, 0, 10}] (* Vaclav Kotesovec, Jan 25 2019 *)
PROG
(Python)
from sympy import factorial as f
from operator import mul
from functools import reduce
def v(n):
return 1 if n<2 else reduce(mul, (f(k+1) - f(j) for k in range(1, n) for j in range(1, k+1)))
print([v(n + 1)//v(n) for n in range(16)]) # Indranil Ghosh, Jul 24 2017
(Magma) F:= Factorial; [1] cat [(&*[F(n+1) - F(j): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 30 2023
(SageMath) f=factorial; [product(f(n+1) - f(k) for k in range(1, n+1)) for n in range(21)] # G. C. Greubel, Aug 30 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 01 2012
EXTENSIONS
a(0) = 1 prepended by G. C. Greubel, Aug 30 2023
STATUS
approved