login
A203286
Number of arrays of 2n nondecreasing integers in -3..3 with sum zero and equal numbers greater than zero and less than zero.
1
4, 12, 28, 57, 104, 176, 280, 425, 620, 876, 1204, 1617, 2128, 2752, 3504, 4401, 5460, 6700, 8140, 9801, 11704, 13872, 16328, 19097, 22204, 25676, 29540, 33825, 38560, 43776, 49504, 55777, 62628, 70092, 78204, 87001, 96520, 106800, 117880, 129801
OFFSET
1,1
COMMENTS
Column 3 of A203291.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6).
Conjectures from Colin Barker, Jun 04 2018: (Start)
G.f.: x*(4 - 4*x + 5*x^3 - 4*x^4 + x^5) / ((1 - x)^5*(1 + x)).
a(n) = (48 + 80*n + 52*n^2 + 16*n^3 + 2*n^4)/48 for n even.
a(n) = (42 + 80*n + 52*n^2 + 16*n^3 + 2*n^4)/48 for n odd.
(End)
EXAMPLE
Some solutions for n=3:
.-2...-2...-2...-2...-3...-3...-3...-3...-1...-3....0...-2...-1...-3...-2...-3
..0...-2...-2...-1....0...-3...-1...-1...-1...-2....0...-2...-1...-1...-2...-2
..0...-2....0...-1....0...-2....0...-1...-1...-1....0....0....0...-1...-1...-2
..0....1....0....1....0....2....0....1....1....1....0....0....0....1....1....2
..0....2....1....1....0....3....2....2....1....2....0....2....1....1....2....2
..2....3....3....2....3....3....2....2....1....3....0....2....1....3....2....3
CROSSREFS
Cf. A203291.
Sequence in context: A102653 A102650 A011939 * A028346 A356728 A079089
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 31 2011
STATUS
approved