login
A203243
Second elementary symmetric function of the first n terms of (1,3,9,27,81,...).
4
3, 39, 390, 3630, 33033, 298389, 2688780, 24208860, 217909263, 1961271939, 17651713170, 158866215690, 1429798332693, 12868192168689, 115813751041560, 1042323823944120, 9380914609207323, 84428232063996639, 759854090319361950
OFFSET
2,1
FORMULA
a(n) =3*A006100(n).
From Colin Barker, Aug 15 2014: (Start)
a(n) = (3-4*3^n+9^n)/16.
a(n) = 13*a(n-1)-39*a(n-2)+27*a(n-3).
G.f.: -3*x^2 / ((x-1)*(3*x-1)*(9*x-1)). (End)
MATHEMATICA
f[k_] := 3^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 32}] (* A203243 *)
Table[a[n]/3, {n, 2, 32}] (* A006100 *)
PROG
(PARI) Vec(-3*x^2/((x-1)*(3*x-1)*(9*x-1)) + O(x^100)) \\ Colin Barker, Aug 15 2014
CROSSREFS
Cf. A006100.
Sequence in context: A292294 A366995 A191468 * A063035 A198970 A361539
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 31 2011
STATUS
approved