login
A203182
Primes p such that A008472(p-1) = A008472(p+1), where A008472 = sum of distinct primes dividing n.
2
3, 18913, 24733, 29633, 32429, 42719, 45751, 46103, 61409, 117991, 149351, 171529, 174019, 176017, 223099, 294893, 326369, 363691, 421727, 423503, 434237, 472631, 658579, 678077, 686423, 706841, 735901, 770059, 771629, 906949, 936827, 937571, 1073447, 1256029
OFFSET
1,1
COMMENTS
Conjecture: the sequence is infinite.
LINKS
EXAMPLE
18913 is in the sequence because:
sum of the distinct prime divisors of 18912 = 2+3+197 = 202;
sum of the distinct prime divisors of 18914 = 2+7+193 = 202.
MAPLE
with(numtheory):for n from 1 to 100000 do:p:=ithprime(n):p1:=p-1: p2:=p+1:t1:=ifactors(p1)[2]; t11 := sum(t1[i][1], i=1..nops(t1)):t2:=ifactors(p2)[2]; t22 := sum(t2[i][1], i=1..nops(t2)):if t11=t22 then printf(`%d, `, p):else fi:od:
MATHEMATICA
Select[Prime[Range[100000]], Total[Transpose[FactorInteger[#-1]][[1]]] == Total[Transpose[FactorInteger[#+1]][[1]]]&] (* Harvey P. Dale, Sep 22 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 30 2011
STATUS
approved