This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203160 (n-1)-st elementary symmetric function of the first n terms of (2,3,1,2,3,1,2,3,1,...)=A010882. 3
 1, 5, 11, 28, 96, 132, 300, 972, 1188, 2592, 8208, 9504, 20304, 63504, 71280, 150336, 466560, 513216, 1073088, 3312576, 3592512, 7464960, 22954752, 24634368, 50948352, 156204288, 166281984, 342641664, 1048080384, 1108546560, 2277559296 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,12,0,0,-36). FORMULA G.f.: x*(36*x^4+16*x^3+11*x^2+5*x+1) / (6*x^3-1)^2. - Colin Barker, Aug 15 2014 EXAMPLE Let esf abbreviate "elementary symmetric function".  Then 0th esf of {2}:  1, 1st esf of {2,3}:  2+3=5, 2nd esf of {2,3,1} is 2*3+2*1+3*1=11. MATHEMATICA f[k_] := 1 + Mod[k, 3]; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 33}] (* A203160 *) LinearRecurrence[{0, 0, 12, 0, 0, -36}, {1, 5, 11, 28, 96, 132}, 40] (* Harvey P. Dale, Mar 19 2016 *) PROG (PARI) Vec(x*(36*x^4+16*x^3+11*x^2+5*x+1)/(6*x^3-1)^2 + O(x^100)) \\ Colin Barker, Aug 15 2014 CROSSREFS Cf. A010882, A203162. Sequence in context: A181896 A041671 A215221 * A095053 A291279 A182379 Adjacent sequences:  A203157 A203158 A203159 * A203161 A203162 A203163 KEYWORD nonn,easy AUTHOR Clark Kimberling, Dec 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 06:41 EDT 2019. Contains 323386 sequences. (Running on oeis4.)