login
A203157
(n-1)-st elementary symmetric function of the first n triangular numbers.
1
1, 4, 27, 288, 4500, 97200, 2778300, 101606400, 4629441600, 257191200000, 17116074360000, 1344389840640000, 123067686661920000, 12988374315396480000, 1565562975516540000000, 213751531590524928000000, 32817539834507780352000000
OFFSET
1,2
FORMULA
Conjecture: 2*(-n+1)*a(n) +n^3*a(n-1)=0. - R. J. Mathar, Oct 01 2016
EXAMPLE
Let esf abbreviate "elementary symmetric function". Then
0th esf of {1}: 1
1st esf of {1,3}: 1+3=4
2nd esf of {1,3,6} is 1*3+1*6+3*6=27
MATHEMATICA
f[k_] := k (k + 1)/2; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 22}] (* A203157 *)
CROSSREFS
Cf. A000217, A006472 (n-th symm. func.), A000292 (1st symm. func.).
Sequence in context: A377811 A179494 A295255 * A304340 A336227 A119820
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 29 2011
STATUS
approved