login
Decimal expansion of Gamma(1/12).
13

%I #21 Apr 15 2024 05:40:15

%S 1,1,4,9,9,4,2,8,1,8,6,0,7,3,9,9,0,6,6,3,8,8,5,6,0,9,8,5,2,4,3,9,2,0,

%T 0,9,7,9,8,7,6,6,1,5,2,0,1,3,6,5,2,9,7,2,1,9,5,3,8,5,1,7,8,3,9,3,6,4,

%U 7,2,5,3,9,9,5,6,7,6,1,1,8,3,5,3,4,3,5,9,1,9,8,5,7,2,2,9,8,3,8

%N Decimal expansion of Gamma(1/12).

%H G. C. Greubel, <a href="/A203140/b203140.txt">Table of n, a(n) for n = 2..5002</a>

%H R. Vidunas, <a href="http://arxiv.org/abs/math/0403510">Expressions for values of the Gamma function</a>, arxiv:math/0403510 [math.CA], 2004.

%H <a href="/index/Ga#gamma_function">Index to sequences related to gamma function</a>

%F Equals 3^(3/8) * sqrt(1 + sqrt(3)) * Gamma(1/3) * Gamma(1/4) / (2^(1/4) * sqrt(Pi)). - _Vaclav Kotesovec_, Apr 15 2024

%e 11.499428186073990663885609852439200979876615201365297219538...

%t RealDigits[Gamma[1/12], 10, 100][[1]] (* _G. C. Greubel_, Jan 15 2017 *)

%t RealDigits[3^(3/8) * Sqrt[1 + Sqrt[3]] * Gamma[1/3] * Gamma[1/4] / (2^(1/4) * Sqrt[Pi]), 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 15 2024 *)

%o (PARI) default(realprecision, 100); gamma(1/12) \\ _G. C. Greubel_, Jan 15 2017

%o (Magma) SetDefaultRealField(RealField(100)); Gamma(1/12); // _G. C. Greubel_, Mar 10 2018

%K nonn,cons

%O 2,3

%A _N. J. A. Sloane_, Dec 29 2011