The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203068 G.f. satisfies: A(x) = Product_{n>=0} 1/( (1 - (x*A(x))^(5*n+2)) * (1 - (x*A(x))^(5*n+3)) ). 1
 1, 0, 1, 1, 3, 6, 16, 37, 101, 252, 691, 1819, 5014, 13630, 37915, 105125, 295229, 829714, 2350106, 6671030, 19035055, 54452982, 156358967, 450089260, 1299394185, 3759776618, 10904685696, 31690917170, 92283005769, 269201392276, 786639839881, 2302254813072, 6748059023185, 19806420012004 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS G.f. is an eigenfunction of the Rogers-Ramanujan identity described by A003106: Sum_{n>=0} x^(n^2+n)/(Product_{k=1..n} 1-x^k) = Product_{n>=0} 1/((1-x^(5*n+2))*(1-x^(5*n+3))). LINKS FORMULA G.f. satisfies: (1) A(x) = Sum_{n>=0} x^(n^2+n)*A(x)^(n^2+n) / (Product_{k=1..n} 1 - x^k*A(x)^k). (2) A(x) = ((Product_{n>0} 1 + (x*A(x))^(2*n)) * (Sum_{n>=0} (x*A(x))^(n^2+2*n) / (Product_{k=1..n} 1 - (x*A(x))^(4*k))). (3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A003106. (4) A(x) = (1/x)*Series_Reversion(x/G(x)) where G(x) is the g.f. of A003106. EXAMPLE G.f.: A(x) = 1 + x^2 + x^3 + 3*x^4 + 6*x^5 + 16*x^6 + 37*x^7 + 101*x^8 +... where the g.f. satisfies the Rogers-Ramanujan identity: A(x) = 1/( (1 - x^2*A(x)^2)*(1 - x^3*A(x)^3) * (1 - x^7*A(x)^7)*(1 - x^8*A(x)^8) * (1 - x^12*A(x)^12)*(1 - x^13*A(x)^13) * (1 - x^17*A(x)^17)*(1 - x^18*A(x)^18) *...); A(x) = 1 + x^2*A(x)^2/(1-x*A(x)) + x^6*A(x)^6/((1-x*A(x))*(1-x^2*A(x)^2)) + x^12*A(x)^12/((1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +... Also, A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A003106: G(x) = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + 4*x^11 + 6*x^12 +... PROG (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), (x*A)^(m^2+m)/prod(k=1, m, 1-(x*A)^k+x*O(x^n)))); polcoeff(A, n)} (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=prod(m=0, n, 1/((1-(x*A)^(5*m+2))*(1-(x*A)^(5*m+3)))+x*O(x^n))); polcoeff(A, n)} CROSSREFS Cf. A203067, A003106. Sequence in context: A072824 A089406 A027852 * A321229 A114410 A190735 Adjacent sequences: A203065 A203066 A203067 * A203069 A203070 A203071 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 12:26 EST 2022. Contains 358634 sequences. (Running on oeis4.)