Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Oct 01 2016 11:15:08
%S 1,4,19,145,1679,31146,919866,43716030,3345087696,413168662224,
%T 82432477483344,26585428576089600,13864587294260493504,
%U 11694921751248976025856,15957837208927564640940096,35227081534568618432596098240
%N (n-1)-st elementary symmetric function of first n Lucas numbers, starting with L(1)=1.
%C From _R. J. Mathar_, Oct 01 2016 (Start):
%C The k-th elementary symmetric functions of the A000204(j), j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0:
%C 1
%C 1 1
%C 1 4 3
%C 1 8 19 12
%C 1 15 75 145 84
%C 1 26 240 970 1679 924
%C 1 44 708 5290 19139 31146 16632
%C 1 73 1984 25822 172549 586177 919866 482328
%C 1 120 5415 119070 1386183 8695980 28470185 43716030 22669416
%C This here is the first subdiagonal. The diagonal is A070825. The 2nd column is A027961. (End)
%t f[k_] := LucasL[k]; t[n_] := Table[f[k], {k, 1, n}]
%t a[n_] := SymmetricPolynomial[n - 1, t[n]]
%t Table[a[n], {n, 1, 16}] (* A203010 *)
%Y Cf. A203009.
%K nonn
%O 1,2
%A _Clark Kimberling_, Dec 29 2011