OFFSET
0,3
COMMENTS
E.g.f. series identity: Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n/n! = Sum_{n>=0} (m*q^n + b)^n * x^n/n! for all q, m, b.
O.g.f. series identity: Sum_{n>=0} m^n * q^(n^2) * x^n/(1-b*q^n*x)^(n+1) = Sum_{n>=0} (m*q^n + b)^n * x^n for all q, m, b.
FORMULA
a(n) = (3^n - 2)^n.
O.g.f.: Sum_{n>=0} 3^(n^2)*x^n/(1 + 2*3^n*x)^(n+1).
EXAMPLE
E.g.f.: A(x) = 1 + x + 49*x^2/2! + 15625*x^3/3! + 38950081*x^4/4! +...
By the series identity, the g.f.:
A(x) = exp(-2*x) + 3*exp(-2*3*x)*x + 3^4*exp(-2*3^2*x)*x^2/2! + 3^9*exp(-2*3^3*x)*x^3/3! + 3^16*exp(-2*3^4*x)*x^4/4! +...
expands into:
A(x) = 1 + x + 7^2*x^2/2! + 25^3*x^3/3! + 79^4*x^4/4! + 241^5*x^5/5! +...+ (3^n-2)^n*x^n/n! +...
PROG
(PARI) {a(n, q=3, m=1, b=-2)=(m*q^n + b)^n}
(PARI) {a(n, q=3, m=1, b=-2)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}
(PARI) {a(n, q=3, m=1, b=-2)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 26 2011
STATUS
approved