OFFSET
0,2
COMMENTS
Equals the self-convolution square-root of A197927 (with offset).
FORMULA
a(n) = (n+1)*2^(n^2-1) - Sum_{k=1..n-1} a(n-k)*a(k)/2 for n>0 with a(0)=1.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 22*x^2 + 980*x^3 + 161638*x^4 + 100318460*x^5 +...
where
A(x)^2 = 1 + 2*2*x + 3*2^4*x^2 + 4*2^9*x^3 + 5*2^16*x^4 + 6*2^25*x^5 +...
more explicitly,
A(x)^2 = 1 + 4*x + 48*x^2 + 2048*x^3 + 327680*x^4 + 201326592*x^5 +...+ A197927(n+1)*x^n +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (m+1)*2^(m^2)*x^m+x*O(x^n))^(1/2), n)}
(PARI) {a(n)=if(n==0, 1, (n+1)*2^(n^2-1)-sum(k=1, n-1, a(n-k)*a(k)/2))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 26 2011
STATUS
approved