%I #5 Mar 31 2012 12:36:53
%S 234256,468980,991196,2121734,4457228,9044252,17632598,33032581,
%T 59606286,103928266,175657382,288668270,462498350,724174382,
%U 1110491348,1670825921,2470576996,3595336728,5155907272,7294290974,10190795144,14072406776
%N Number of (n+3)X10 binary arrays with consecutive windows of four bits considered as a binary number nondecreasing in every row and column
%C Column 7 of A202939
%H R. H. Hardin, <a href="/A202938/b202938.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/151200)*n^10 + (1/840)*n^9 + (61/960)*n^8 + (47/28)*n^7 + (1307/50)*n^6 + (1296/5)*n^5 + (102078047/60480)*n^4 + (1210633/168)*n^3 + (91054793/3600)*n^2 + (2561054/35)*n + 126609
%e Some solutions for n=3
%e ..0..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..1..0..0
%e ..0..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..1..0..0
%e ..0..0..0..0..0..0..0..1..1..1....0..0..0..0..0..0..1..1..1..0
%e ..0..0..0..0..0..0..1..1..0..1....0..0..0..0..0..0..1..1..1..1
%e ..0..0..0..0..0..0..1..0..0..1....0..0..0..0..0..0..1..1..1..1
%e ..0..0..0..0..0..0..1..1..1..1....0..0..0..0..0..0..0..1..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Dec 26 2011