Maple-assisted proof of formula for A202902

Robert Israel

9 May 2018
There are $2^{8}=256$ configurations for a 2×4 sub-array, but the 32 where the top left entry is 1 and its two neighbours are 0 are not allowed. This leaves 224 allowed configurations. Consider the 224×224 transition matrix T such that $T_{i j}=1$ if the bottom two rows of a 3×4 sub-array could be in configuration i while the top two rows are in configuration j (i.e. the middle row is compatible with both i and j, and every 1 in the middle row has a NW, E or S neighbour that is 1), and 0 otherwise. The following Maple code computes it. Configurations are encoded as 8 -element lists in the order
$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$

```
> Configs:= select(t -> t[1]=0 or t[2]=1 or t[5]=1, [seq(convert
    (2^8+i,base,2)[1..8],i=0..2^8-1)]):
> Compatible:= proc(i,j)
    if Configs[i][1..4] <> Configs[j][5..8] then return 0 fi;
    if Configs[i][2] = 1 and Configs[j][1]+Configs[i][3]+Configs[i]
    [6] = O then return 0 fi;
    if Configs[i][3] = 1 and Configs[j][2]+Configs[i][4]+Configs[i]
    [7] = 0 then return 0 fi;
    if Configs[i][4] = 1 and Configs[j][3]+Configs[i][8] = 0 then
return O fi;
    1
end proc:
T:= Matrix(224,224,Compatible):
```

Thus $a(n)=u T^{n} v$ where u and v are row and column vectors respectively with $u_{i}=1$ for i corresponding to configurations with bottom row $(0,0,0), 0$ otherwise, and $v_{i}=1$ for i corresponding to configurations with top row $(0,0,0), 0$ otherwise. The following Maple code produces these vectors.

```
> u:= Vector[row] (224, i -> `if`(Configs[i][5..8] = [0,0,0,0],1,0))
    v:= Vector(224, j -> `if`(Configs[j][1..4] = [0,0,0,0],1,0)):
```

To check, here are the first few entries of our sequence.

```
> TV[0]:= v:
    for n from 1 to 14 do TV[n]:= T . TV[n-1] od:
> A:= [seq(u . TV[n],n=1..14)];
A := [1, 40, 494, 4892, 51068, 538672, 5654616, 59369072, 623600944, 6549786560,
    68792261728, 722531010240, 7588808329152, 79705877679872]
```

Now here is the minimal polynomial P of T, as computed by Maple.

$$
\begin{align*}
> & \mathrm{P}:=\text { unapply (LinearAlgebra:-MinimalPolynomial(T, t), t); } \\
P: & =t \mapsto t^{15}-16 t^{14}+76 t^{13}-272 t^{12}+1060 t^{11}-2704 t^{10}+5184 t^{9}-9920 t^{8}+11904 t^{7} \tag{2}\\
& -9472 t^{6}+7168 t^{5}-4096 t^{4}+1024 t^{3}
\end{align*}
$$

This turns out to have degree 15 , but with the 3 lowest coefficients 0 . Thus for $k \geq 0$ we will have

$$
\begin{aligned}
0= & u P(T) T^{k} v=\sum_{i=0}^{15} p_{i} a(i+k) \\
= & 1024 a(k+3)-4096 a(k+4)+7168 a(k+5)-9472 a(k+6)+11904 a(k+7)-9920 a(k \\
& \quad+8)+5184 a(k+9)-2704 a(k+10)+1060 a(k+11)-272 a(k+12)+76 a(k+13) \\
& \quad-16 a(k+14)+a(k+15)
\end{aligned}
$$

where p_{i} is the coefficient of t^{i} in $P(t)$. That is, the sequence certainly satisfies the conjectured recurrence
$a(n)=16 a(n-1)-76 a(n-2)+272 a(n-3)-1060 a(n-4)+2704 a(n-5)-5184 a(n-6)$ $+9920 a(n-7)-11904 a(n-8)+9472 a(n-9)-7168 a(n-10)+4096 a(n-11)-1024 a(n$ -12)
for $n \geq 15$. All we need to do now is to verify that in fact it satisfies the recurrence for $n=13$ and $n=14$ as well.

$$
\left[\begin{array}{cc}
>\operatorname{seq}(A[n]-(16 * A[n-1]-76 * A[n-2]+272 * A[n-3]-1060 * A[n-4]+2704 * A \\
{[n-5]-5184 * A[n-6]+9920 * A[n-7]-11904 * A[n-8]+9472 * A[n-9]-7168 *} \\
A[n-10]+4096 * A[n-11]-1024 * A[n-12]), n=13.14) ; \\
0,0 \tag{3}
\end{array}\right.
$$

