login
A202882
Number of n X 1 0..2 arrays with every nonzero element less than or equal to some horizontal or vertical neighbor.
8
1, 3, 9, 22, 51, 121, 292, 704, 1691, 4059, 9749, 23422, 56268, 135166, 324692, 779977, 1873673, 4500958, 10812237, 25973244, 62393157, 149881402, 360046432, 864906711, 2077686532, 4991036946, 11989513056, 28801314179, 69186771332
OFFSET
1,2
LINKS
T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Lemma 2.1, k=3, one peak.
FORMULA
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5).
Empirical: G.f.: -x*(1+3*x^2+x^4)/(-1+3*x-3*x^2+4*x^3-x^4+x^5). - R. J. Mathar, Jul 09 2017
EXAMPLE
Some solutions for n=5
..2....2....1....0....2....2....0....1....0....1....1....0....2....1....0....2
..2....2....1....1....2....2....2....1....2....2....1....0....2....2....1....2
..0....1....1....2....0....2....2....0....2....2....1....1....1....2....1....0
..0....1....1....2....1....1....2....0....0....0....2....1....2....2....2....2
..0....0....1....2....1....1....1....0....0....0....2....1....2....0....2....2
CROSSREFS
Column 1 of A202889.
Sequence in context: A099166 A222083 A305612 * A350105 A336511 A054442
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 25 2011
STATUS
approved