login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202834 E.g.f.: exp(3*x + x^2/2). 4
1, 3, 10, 36, 138, 558, 2364, 10440, 47868, 227124, 1112184, 5607792, 29057400, 154465704, 841143312, 4685949792, 26674999056, 155000193840, 918475565472, 5545430185536, 34087326300576, 213170582612448, 1355345600149440, 8755789617922176, 57440317657203648 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = Sum_{k=0..[n/2]} 3^(n-2*k)/2^k * n!/((n-2*k)!*k!).

O.g.f.: 1/(1-3*x - x^2/(1-3*x - 2*x^2/(1-3*x - 3*x^2/(1-3*x - 4*x^2/(1-3*x -...))))), a continued fraction.

a(n) ~ n^(n/2)*exp(-n/2+3*sqrt(n)-9/4)/sqrt(2) * (1+15/(8*sqrt(n))). - Vaclav Kotesovec, May 23 2013

Recurrence: a(n) = 3*a(n-1) + (n-1)*a(n-2). - Vaclav Kotesovec, May 23 2013

EXAMPLE

E.g.f.: A(x) = 1 + 3*x + 10*x^2/2! + 36*x^3/3! + 138*x^4/4! + 558*x^5/5! +...

MATHEMATICA

CoefficientList[Series[Exp[3*x + x^2/2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)

PROG

(PARI) {a(n)=n!*polcoeff(exp(3*x+x^2/2+x*O(x^n)), n)}

(PARI) {a(n)=sum(k=0, n\2, 3^(n-2*k)/2^k * n!/((n-2*k)!*k!))}

(PARI) /* O.g.f. as a continued fraction: */

{a(n)=local(CF=1+3*x+x*O(x^n)); for(k=1, n-1, CF=1/(1-3*x-(n-k)*x^2*CF)); polcoeff(CF, n)}

CROSSREFS

Cf. A202833.

Sequence in context: A002212 A149041 A307346 * A129247 A162162 A149042

Adjacent sequences:  A202831 A202832 A202833 * A202835 A202836 A202837

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 13:11 EDT 2019. Contains 324222 sequences. (Running on oeis4.)