login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202832 E.g.f: exp(2*x + 5*x^2/2). 2
1, 2, 9, 38, 211, 1182, 7639, 50738, 368841, 2767202, 22132249, 182624598, 1582522891, 14122521662, 131109031239, 1250794578818, 12334766500561, 124733099306562, 1297921351160809, 13821821639912198, 150946171640101251, 1684074507271422302, 19217497036753475959 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = Sum_{k=0..[n/2]} 2^(n-3*k)*5^k * n!/((n-2*k)!*k!).

O.g.f.: 1/(1-2*x - 5*x^2/(1-2*x - 10*x^2/(1-2*x - 15*x^2/(1-2*x - 20*x^2/(1-2*x -...))))), a continued fraction.

Recurrence: a(n) = 2*a(n-1) + 5*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 20 2012

a(n) ~ exp(2/5*sqrt(5*n)-n/2-1/5)*5^(n/2)*n^(n/2)/sqrt(2)*(1+17/150*sqrt(5)/sqrt(n)). - Vaclav Kotesovec, Oct 20 2012

EXAMPLE

E.g.f.: 1 + 2*x + 9*x^2/2! + 38*x^3/3! + 211*x^4/4! + 1182*x^5/5! +...

MATHEMATICA

CoefficientList[Series[E^(2*x+5*x^2/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)

PROG

(PARI) {a(n)=n!*polcoeff(exp(2*x+5*x^2/2+x*O(x^n)), n)}

(PARI) {a(n)=sum(k=0, n\2, 2^(n-3*k)*5^k*n!/((n-2*k)!*k!))}

(PARI) /* O.g.f. as a continued fraction: */

{a(n)=local(CF=1+2*x+x*O(x^n)); for(k=1, n-1, CF=1/(1-2*x-5*(n-k)*x^2*CF)); polcoeff(CF, n)}

CROSSREFS

Cf. A202831.

Sequence in context: A057647 A249925 A162972 * A069724 A132961 A278050

Adjacent sequences:  A202829 A202830 A202831 * A202833 A202834 A202835

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 08:25 EDT 2020. Contains 336201 sequences. (Running on oeis4.)