This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202828 E.g.f.: exp(4*x/(1-2*x)) / sqrt(1-4*x^2). 8
 1, 4, 36, 400, 5776, 97344, 1915456, 42406144, 1049760000, 28558296064, 848579961856, 27271456395264, 943132599095296, 34877026635366400, 1373536895379849216, 57351382681767706624, 2530646978003730497536, 117614221470591038521344, 5742190572014854792806400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = A000898(n)^2, where the e.g.f. of A000898 is exp(2*x + x^2). a(n) = ( Sum_{k=0..[n/2]} 2^(n-2*k) * n!/((n-2*k)!*k!) )^2. a(n) = ( Sum_{k=0..n} Stirling1(n, k)*2^k*Bell(k) )^2. [From formula by Vladeta Jovovic in A000898]. a(n) ~ n^n*exp(2*sqrt(2*n)-1-n)*2^(n-1). - Vaclav Kotesovec, May 23 2013 Recurrence: a(n) = 2*(n+1)*a(n-1) + 4*(n-1)*(n+1)*a(n-2) - 8*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013 EXAMPLE E.g.f.: A(x) = 1 + 4*x + 36*x^2/3! + 400*x^3/3! + 5776*x^4/4! + 97344*x^5/5! +... where A(x) = 1 + 2^2*x + 6^2*x^2/2! + 20^2*x^3/3! + 76^2*x^4/4! + 312^2*x^5/5! +...+ A000898(n)^2*x^n/n! +... MATHEMATICA CoefficientList[Series[Exp[4*x/(1-2*x)]/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *) PROG (PARI) {a(n)=n!*polcoeff(exp(4*x/(1-2*x)+x*O(x^n))/sqrt(1-4*x^2+x*O(x^n)), n)} (PARI) {a(n)=sum(k=0, n\2, 2^(n-2*k)*n!/((n-2*k)!*k!))^2} (PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)} {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)} {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k)*2^k)^2} CROSSREFS Cf. A000898, A202827, A202829, A202831, A202833, A202835, A202836. Sequence in context: A291274 A239112 A002894 * A131765 A244559 A319175 Adjacent sequences:  A202825 A202826 A202827 * A202829 A202830 A202831 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 25 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 12:14 EDT 2019. Contains 321448 sequences. (Running on oeis4.)