login
Triangle of numerators of coefficients of the polynomial Q^(4)_m(n) defined by the recursion Q^(4)_0(n)=1; for m>=1,Q^(4)_m(n)=sum{i=1,...,n}i^4*Q^(4)_(m-1)(i). For m>=0, the denominator for all 5*m+1 terms of the m-th row is A202369(m+1)
0

%I #18 Jul 10 2019 01:48:30

%S 1,6,15,10,0,-1,0,36,280,795,900,88,-450,-20,200,1,-30,0,19656,311220,

%T 1991430,6354075,9367722,1283100,-10854935,-1064700,16237338,615615,

%U -16336320,-136500,8189909,8190,-1243800,0

%N Triangle of numerators of coefficients of the polynomial Q^(4)_m(n) defined by the recursion Q^(4)_0(n)=1; for m>=1,Q^(4)_m(n)=sum{i=1,...,n}i^4*Q^(4)_(m-1)(i). For m>=0, the denominator for all 5*m+1 terms of the m-th row is A202369(m+1)

%C See comment in A175669.

%F Q^(4)_n(1)=1.

%e The sequence of polynomials begins

%e Q^(3)_0=1,

%e Q^(3)_1=(6*x^5+15*x^4+10*x^3-x)/30,

%e Q^(3)_2=(36*x^10+280*x^9+795*x^8+900*x^7+88*x^6-450*x^5-20*x^4+200*x^3+x^2-30*x)/1800.

%Y Cf. A202339, A053657, A202367, A202368, A202369, A175699, A202717

%K sign,tabf

%O 0,2

%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Dec 23 2011