login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202749 Triangle of numerators of coefficients of the polynomial Q^(4)_m(n) defined by the recursion Q^(4)_0(n)=1; for m>=1,Q^(4)_m(n)=sum{i=1,...,n}i^4*Q^(4)_(m-1)(i). For m>=0, the denominatorfor all 5*m+1 terms of the m-th row is A202369(m+1) 0
1, 6, 15, 10, 0, -1, 0, 36, 280, 795, 900, 88, -450, -20, 200, 1, -30, 0, 19656, 311220, 1991430, 6354075, 9367722, 1283100, -10854935, -1064700, 16237338, 615615, -16336320, -136500, 8189909, 8190, -1243800, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See comment in A175669.

LINKS

Table of n, a(n) for n=0..33.

FORMULA

Q^(4)_n(1)=1.

EXAMPLE

The sequence of polynomials begins

Q^(3)_0=1,

Q^(3)_1=(6*x^5+15*x^4+10*x^3-x)/30,

Q^(3)_2=(36*x^10+280*x^9+795*x^8+900*x^7+88*x^6-450*x^5-20*x^4+200*x^3+x^2-30*x)/1800.

CROSSREFS

Cf. A202339, A053657, A202367, A202368, A202369, A175699, A202717

Sequence in context: A003566 A205149 A070870 * A123623 A240990 A215739

Adjacent sequences:  A202746 A202747 A202748 * A202750 A202751 A202752

KEYWORD

sign

AUTHOR

Vladimir Shevelev and Peter J. C. Moses, Dec 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 19:11 EST 2014. Contains 250103 sequences.