login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202749 Triangle of numerators of coefficients of the polynomial Q^(4)_m(n) defined by the recursion Q^(4)_0(n)=1; for m>=1,Q^(4)_m(n)=sum{i=1,...,n}i^4*Q^(4)_(m-1)(i). For m>=0, the denominatorfor all 5*m+1 terms of the m-th row is A202369(m+1) 0
1, 6, 15, 10, 0, -1, 0, 36, 280, 795, 900, 88, -450, -20, 200, 1, -30, 0, 19656, 311220, 1991430, 6354075, 9367722, 1283100, -10854935, -1064700, 16237338, 615615, -16336320, -136500, 8189909, 8190, -1243800, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See comment in A175669.

LINKS

Table of n, a(n) for n=0..33.

FORMULA

Q^(4)_n(1)=1.

EXAMPLE

The sequence of polynomials begins

Q^(3)_0=1,

Q^(3)_1=(6*x^5+15*x^4+10*x^3-x)/30,

Q^(3)_2=(36*x^10+280*x^9+795*x^8+900*x^7+88*x^6-450*x^5-20*x^4+200*x^3+x^2-30*x)/1800.

CROSSREFS

Cf. A202339, A053657, A202367, A202368, A202369, A175699, A202717

Sequence in context: A003566 A205149 A070870 * A123623 A240990 A215739

Adjacent sequences:  A202746 A202747 A202748 * A202750 A202751 A202752

KEYWORD

sign

AUTHOR

Vladimir Shevelev and Peter J. C. Moses, Dec 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 22 21:52 EDT 2014. Contains 248411 sequences.