This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202749 Triangle of numerators of coefficients of the polynomial Q^(4)_m(n) defined by the recursion Q^(4)_0(n)=1; for m>=1,Q^(4)_m(n)=sum{i=1,...,n}i^4*Q^(4)_(m-1)(i). For m>=0, the denominatorfor all 5*m+1 terms of the m-th row is A202369(m+1) 0
 1, 6, 15, 10, 0, -1, 0, 36, 280, 795, 900, 88, -450, -20, 200, 1, -30, 0, 19656, 311220, 1991430, 6354075, 9367722, 1283100, -10854935, -1064700, 16237338, 615615, -16336320, -136500, 8189909, 8190, -1243800, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See comment in A175669. LINKS FORMULA Q^(4)_n(1)=1. EXAMPLE The sequence of polynomials begins Q^(3)_0=1, Q^(3)_1=(6*x^5+15*x^4+10*x^3-x)/30, Q^(3)_2=(36*x^10+280*x^9+795*x^8+900*x^7+88*x^6-450*x^5-20*x^4+200*x^3+x^2-30*x)/1800. CROSSREFS Cf. A202339, A053657, A202367, A202368, A202369, A175699, A202717 Sequence in context: A003566 A205149 A070870 * A123623 A240990 A215739 Adjacent sequences:  A202746 A202747 A202748 * A202750 A202751 A202752 KEYWORD sign,tabf AUTHOR Vladimir Shevelev and Peter J. C. Moses, Dec 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 22 03:28 EDT 2017. Contains 290942 sequences.