The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202679 Numbers that are sums of two coprime positive cubes. 6
 2, 9, 28, 35, 65, 91, 126, 133, 152, 189, 217, 341, 344, 351, 370, 407, 468, 513, 539, 559, 637, 730, 737, 793, 854, 855, 1001, 1027, 1072, 1241, 1332, 1339, 1343, 1358, 1395, 1456, 1547, 1674, 1729, 1843, 1853, 2060, 2071, 2198, 2205, 2224, 2261, 2322, 2331, 2413 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Not a subsequence of A020898: non-cubefree members of this sequence include 152, 189, 344, 351, 513, 1072. - Robert Israel, Mar 16 2016 LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000 R. C. Baker, Sums of two relatively prime cubes, Acta Arithmetica 129(2007), 103-146. Kevin A. Broughan, A computational approach to characterizing the sum of two cubes, Hamilton: University of Waikato, 2001, p. 9. P. Erdős and K. Mahler, On the number of integers which can be represented by a binary form, J. London Math. Soc. 13 (1938), pp. 134-139. [alternate link] P. Erdős, On the integers of the form x^k + y^k, J. London Math. Soc. 14 (1939), pp. 250-254. FORMULA Erdős & Mahler shows that a(n) < kn^(3/2) for some k. Erdős later gives an elementary proof. - Charles R Greathouse IV, Dec 05 2012 EXAMPLE 28 is in the sequence since 1^3 + 3^3 = 28 and (1, 3) = 1. MAPLE N:= 10000: # to get all terms <= N S:= {2, seq(seq(x^3 + y^3, y = select(t -> igcd(t, x)=1, [\$x+1 .. floor((N - x^3)^(1/3))])), x = 1 .. floor((N/2)^(1/3)))}: sort(convert(S, list)); # Robert Israel, Mar 15 2016 MATHEMATICA nn = 2500; Union[Flatten[Table[If[CoprimeQ[x, y] == True, x^3 + y^3, {}], {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] Select[Range@ 2500, Length[PowersRepresentations[#, 2, 3] /. {{0, _} -> Nothing, {a_, b_} /; ! CoprimeQ[a, b] -> Nothing}] > 0 &] (* Michael De Vlieger, Mar 15 2016 *) PROG (PARI) is(n)=for(k=1, (n\2+.5)^(1/3), if(gcd(k, n)==1&&ispower(n-k^3, 3), return(1))); 0 \\ Charles R Greathouse IV, Apr 13 2012 (PARI) list(lim)=my(v=List()); forstep(x=1, lim^(1/3), 2, forstep(y=2, (lim-x^3+.5)^(1/3), 2, if(gcd(x, y)==1, listput(v, x^3+y^3))); forstep(y=1, min((lim-x^3+.5)^(1/3), x), 2, if(gcd(x, y)==1, listput(v, x^3+y^3)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Dec 05 2012 CROSSREFS Subsequence of A003325. Cf. A024670, A001235, A018850. Sequence in context: A090900 A155472 A100293 * A340049 A256467 A303373 Adjacent sequences:  A202676 A202677 A202678 * A202680 A202681 A202682 KEYWORD nonn AUTHOR Arkadiusz Wesolowski, Jan 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 14:32 EDT 2021. Contains 343063 sequences. (Running on oeis4.)