login
A202629
G.f.: exp( Sum_{n>=1} (3^n - A(x))^n * x^n/n ).
2
1, 2, 32, 5872, 10244654, 166008832278, 24810745551644598, 34076373857728228215714, 428687442859626139066325301140, 49247086410581981443124673896698437124, 51529024823944797258322973430879108808780359272
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 32*x^2 + 5872*x^3 + 10244654*x^4 + 166008832278*x^5 +...
where
log(A(x)) = (3 - A(x))*x + (3^2 - A(x))^2*x^2/2 + (3^3 - A(x))^3*x^3/3 + (3^4 - A(x))^4*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (3^m-A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 21 2011
STATUS
approved