The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202624 Array read by antidiagonals: T(n,k) = order of Fibonacci group F(n,k), writing 0 if the group is infinite, for n >= 2, k >= 1. 6
 1, 2, 1, 3, 8, 8, 4, 3, 2, 5, 5, 24, 63, 0, 11, 6, 5, 0, 3, 22, 0, 7, 48, 5, 624, 0, 1512, 29, 8, 7, 342, 125, 4, 0, 0, 0, 9, 80, 0, 0, 7775, 0, 0, 0, 0, 10, 9, 8, 7 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS The Fibonacci group F(r,n) has presentation , where there are n relations, obtained from the first relation by applying the permutation (1,2,,n) to the subscripts and reducing subscripts mod n. Then T(n,k) = |F(n,k)|. T(7,5) was not known in 1998 (Chalk). REFERENCES Campbell, Colin M.; and Gill, David M. On the infiniteness of the Fibonacci group F(5,7). Algebra Colloq. 3 (1996), no. 3, 283-284. D. L. Johnson, Presentation of Groups, Cambridge, 1976, see table p. 182. Mednykh, Alexander; and Vesnin, Andrei; On the Fibonacci groups, the Turk's head links and hyperbolic 3-manifolds, in Groups-Korea '94 (Pusan), 231-239, de Gruyter, Berlin, 1995. Nikolova, Daniela B., The Fibonacci groups - four years later, in Semigroups (Kunming, 1995), 251-255, Springer, Singapore, 1998. Nikolova, D. B.; and Robertson, E. F., One more infinite Fibonacci group. C. R. Acad. Bulgare Sci. 46 (1993), no. 3, 13-15. Thomas, Richard M., The Fibonacci groups revisited, in Groups - St. Andrews 1989, Vol. 2, 445-454, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991. LINKS Brunner, A. M., The determination of Fibonacci groups, Bull. Austral. Math. Soc. 11 (1974), 11-14. A. M. Brunner, On groups of Fibonacci type, Proc. Edinburgh Math. Soc. (2) 20 (1976/77), no. 3, 211-213. C. M. Campbell and P. P. Campbell, Search techniques and epimorphisms between certain groups and Fibonacci groups, Irish Math. Soc. Bull. No. 56 (2005), 21-28. Chalk, Christopher P., Fibonacci groups with aspherical presentations, Comm. Algebra 26 (1998), no. 5, 1511-1546. C. P. Chalk and D. L. Johnson, The Fibonacci groups II, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), no. 12, 79-86. J. H. Conway et al., Advanced problem 5327, Amer. Math. Monthly, 72 (1965), 915; 74 (1967), 91-93. Helling, H.; Kim, A. C.; and Mennicke, J. L.; A geometric study of Fibonacci groups, J. Lie Theory 8 (1998), no. 1, 1-23. Derek F. Holt, An alternative proof that the Fibonacci group F(2,9) is infinite, Experiment. Math. 4 (1995), no. 2, 97-100. David J. Seal, The orders of the Fibonacci groups, Proc. Roy. Soc. Edinburgh, Sect. A 92 (1982), no. 3-4, 181-192. A. Szczepanski, The Euclidean representations of the Fibonacci groups, Quart. J. Math. 52 (2001), 385-389. EXAMPLE The array begins: k =  1  2   3    4    5     6     7     8      9    10 ... ---------------------------------------------------------- n=1: 0  0   0    0    0     0     0     0      0     0 ... n=2: 1  1   8    5   11     0    29     0      0     0 ... n=3: 2  8   2    0   22  1512     0     0      0     0 ... n=4: 3  3  63    3    0     0     0     0      ?     0 ... n=5: 4 24   0  624    4     0     0     0      0     0 ... n=6: 5  5   5  125 7775     5     0     0      0     0 ... n=7: 6 48 342    0    ? 7^6-1     6     0      0     0 ... n=8: 7  7   0    7    ?     0 8^7-1     7      0     0 ... n=9: 8 80   8 6560    0     0     0 9^8-1      8     0 ... n=10 9  9 999 4905    9     ?     ?     0 10^9-1     9 ... ... For example, T(2,5) = 11, since the presentation defines the cyclic group of order 11. This example is due to John Conway. This table is based on those in Johnson (1976) and Thomas (1989), supplemented by values from Chalk (1998). We have ignored the n=1 row when reading the table by antidiagonals. CROSSREFS Cf. A037205 (a diagonal), A065530, A202625, A202626, A202627 (columns). Sequence in context: A256420 A205391 A078045 * A145490 A329180 A302544 Adjacent sequences:  A202621 A202622 A202623 * A202625 A202626 A202627 KEYWORD nonn,tabl,more,nice AUTHOR N. J. A. Sloane, Dec 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 06:09 EST 2020. Contains 338833 sequences. (Running on oeis4.)