login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202617 E.g.f. satisfies: A(x) = exp( x*(1 + A(x)^2)/2 ). 1
1, 1, 3, 19, 185, 2441, 40747, 823691, 19564785, 534145105, 16482667091, 567343245635, 21552042260905, 895664877901145, 40422799315249275, 1968883362773653051, 102942561775293158369, 5750760587905912310177, 341848844954020959953059, 21545207157567497255044979 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare to e.g.f. F(x) of A007889: F(x) = exp(x*(1 + F(x))/2), where A007889(n) = number of intransitive (or alternating) trees: vertices are [0,n] and for no i<j<k are both (i,j) and (j,k) edges.

Related sequence: A058014(n) = number of labeled trees with n+1 nodes such that the degrees of all nodes, excluding the first node, are odd.

LINKS

Table of n, a(n) for n=0..19.

FORMULA

E.g.f. A(x) equals the formal inverse of function 2*log(x)/(1+x^2).

E.g.f.: exp( Sum_{n>=1} n^(n-1) * cosh(n*x) * x^n / n! ). - Paul D. Hanna, Nov 20 2012

E.g.f.: exp(G(x)) where G(x) = x/(1 - tanh(G(x))) is the e.g.f. of A214225. - Paul D. Hanna, Nov 20 2012

E.g.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the e.g.f. of A058014.

a(n) = (1/2^n)*Sum_{k=0..n} C(n,k)*(2*k+1)^(n-1).

Powers of e.g.f.:

If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(2*k+p)^(n-1).

a(n) ~ sqrt(1+c) * n^(n-1) / (2 * exp(n) * c^(n+1/2)), where c = LambertW(exp(-1)) = 0.278464542761... (see A202357). - Vaclav Kotesovec, Jan 10 2014

E.g.f.: sqrt(-LambertW(-x*exp(x))/x). - Vaclav Kotesovec, Jan 10 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 185*x^4/4! + 2441*x^5/5! +...

where log(A(x)) = x*(1 + A(x)^2)/2 and

log(A(x)) = x + 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! + 23616*x^6/6! +...

A(x)^2 = 1 + 2*x + 8*x^2/2! + 56*x^3/3! + 576*x^4/4! + 7872*x^5/5! + 134656*x^6/6! +...

MATHEMATICA

CoefficientList[Series[Sqrt[-ProductLog[-E^x*x]/x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 10 2014 *)

PROG

(PARI) a(n)=local(A=1+x); for(i=0, n, A=exp(x*(1+A^2)/2 +x*O(x^n))); n!*polcoeff(A, n)

(PARI) /* Coefficients of A(x)^p are given by: */

{a(n, p=1)=(1/2^n)*sum(k=0, n, binomial(n, k)*p*(2*k+p)^(n-1))}

(PARI) a(n)=n!*polcoeff(exp(sum(k=1, n, k^(k-1)*cosh(k*x +x*O(x^n))*x^k/k!) +x*O(x^n)), n)

for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 20 2012

CROSSREFS

Cf. A007889, A058014, A214225, A138860, A202357.

Sequence in context: A203133 A006531 A242369 * A143633 A052888 A141623

Adjacent sequences:  A202614 A202615 A202616 * A202618 A202619 A202620

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 15:54 EST 2018. Contains 299380 sequences. (Running on oeis4.)