%I
%S 3,2,2,2,8,4,6,1,5,9,7,1,0,3,0,0,6,0,0,3,6,2,3,5,4,8,6,2,8,9,1,3,9,2,
%T 3,5,4,5,5,4,4,3,1,1,4,8,0,7,4,6,3,8,6,8,3,0,3,7,2,4,5,0,6,7,0,1,4,1,
%U 5,2,2,6,1,2,9,4,3,3,8,1,6,4,6,7,8,0,0,8,9,8,7,3,2,7,2,1,6,4,6
%N Decimal expansion of the number x satisfying e^xe^(3x)=1.
%C See A202537 for a guide to related sequences. The Mathematica program includes a graph.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e x=0.32228461597103006003623548628913923545544311...
%t u = 1; v = 3;
%t f[x_] := E^(u*x)  E^(v*x); g[x_] := 1
%t Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision > 110]
%t RealDigits[r] (* A202538 *)
%t RealDigits[ Log[ Root[#^4  #^3  1&, 2]], 10, 99] // First (* _JeanFrançois Alcover_, Feb 27 2013 *)
%o (PARI) log(polrootsreal(x^4x^31)[2]) \\ _Charles R Greathouse IV_, May 15 2019
%Y Cf. A202537.
%K nonn,cons
%O 0,1
%A _Clark Kimberling_, Dec 21 2011
