This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202535 n*phi(n)*abs( mobius(n) ). 2
 1, 2, 6, 0, 20, 12, 42, 0, 0, 40, 110, 0, 156, 84, 120, 0, 272, 0, 342, 0, 252, 220, 506, 0, 0, 312, 0, 0, 812, 240, 930, 0, 660, 544, 840, 0, 1332, 684, 936, 0, 1640, 504, 1806, 0, 0, 1012, 2162, 0, 0, 0, 1632, 0, 2756, 0, 2200, 0, 2052, 1624, 3422 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The inverse Mobius transform is b(n>=1) = 1, 3, 7, 3, 21, 21, 43, 3,7, 63, 11, 21,...., multiplicative with b(p^e) = A002061(p), e>=1 (see A119959). - Mathar a(n) > 0 only when n is squarefree. - Alonso del Arte, Dec 20 2011 LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 FORMULA a(n) = A002618(n) *A008966(n). Multiplicative with a(p^e) = (p-1)*p if e=1, a(p^e)=0 if e>1. Dirichlet g.f. sum_(n>=1) a(n)/n^s = product_{primes p} (1-p^(1-s)+p^(2-s)). EXAMPLE a(5) = 20 because 5 phi(5) |mu(5)| = 5 * 4 * |(-1)| = 20. MATHEMATICA Table[n EulerPhi[n] Abs[MoebiusMu[n]], {n, 60}] (* Alonso del Arte, Dec 20 2011 *) PROG (PARI) a(n)=n*eulerphi(n)*abs(moebius(n)) \\ Charles R Greathouse IV, Dec 20 2011 CROSSREFS Cf. A079579. Sequence in context: A243015 A139717 A285119 * A138703 A106458 A213323 Adjacent sequences:  A202532 A202533 A202534 * A202536 A202537 A202538 KEYWORD nonn,mult,easy AUTHOR R. J. Mathar, Dec 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 07:31 EST 2019. Contains 329948 sequences. (Running on oeis4.)