OFFSET
1,2
FORMULA
E.g.f.: 1/(1-x) * Sum_{n>=0} log(1 - x)^(2*n+1) / (n!*(n+1)!).
EXAMPLE
E.g.f.: A(x) = x + 3*x^2/2! + 14*x^3/3! + 80*x^4/4! + 539*x^5/5! + 4179*x^6/6! + 36630*x^7/7! + 358056*x^8/8! + 3860922*x^9/9! + 45519870*x^10/10! + ...
The coefficients in Product_{k=1..n} (1+k*x+x^2), n>=0, form the triangle:
[1];
[(1), 1, 1];
[1,(3), 4, 3, 1];
[1, 6, (14), 18, 14, 6, 1];
[1, 10, 39, (80), 100, 80, 39, 10, 1];
[1, 15, 90, 285, (539), 660, 539, 285, 90, 15, 1];
[1, 21, 181, 840, 2339, (4179), 5038, 4179, 2339, 840, 181, 21, 1];
[1, 28, 329, 2128, 8400, 21392, (36630), 43624, 36630, 21392, 8400, 2128, 329, 28, 1]; ...
the coefficients in parenthesis form the initial terms of this sequence.
MATHEMATICA
Flatten[{1, Table[Coefficient[Expand[Product[1 + k*x + x^2, {k, 1, n+1}]], x^n], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
PROG
(PARI) {a(n) = polcoeff(prod(k=1, n, 1 + k*x + x^2 +x*O(x^n)), n-1)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2011
EXTENSIONS
Changed offset to 1 to agree with e.g.f. - Paul D. Hanna, Mar 02 2019
STATUS
approved