login
A202460
Number of (n+2) X 9 binary arrays with consecutive windows of three bits considered as a binary number nondecreasing in every row and column.
1
2744, 8064, 21972, 54618, 124740, 264822, 528390, 1000023, 1808746, 3145568, 5286030, 8618736, 13680954, 21202494, 32159196, 47837493, 69911652, 100535440, 142450112, 199110774, 274833336, 374964438, 506076906, 676193475, 895041702
OFFSET
1,1
COMMENTS
Column 7 of A202461.
LINKS
FORMULA
Empirical: a(n) = (1/60480)*n^9 + (1/672)*n^8 + (163/3360)*n^7 + (119/144)*n^6 + (24221/2880)*n^5 + (15553/288)*n^4 + (1671487/7560)*n^3 + (282325/504)*n^2 + (404227/420)*n + 937.
Conjectures from Colin Barker, Jun 01 2018: (Start)
G.f.: x*(2744 - 19376*x + 64812*x^2 - 131502*x^3 + 175860*x^4 - 159456*x^5 + 97542*x^6 - 38691*x^7 + 9010*x^8 - 937*x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..1..0..0
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..1..1..1
..0..0..0..0..0..0..0..1..0....0..0..0..0..0..1..1..1..1
..0..0..0..0..0..0..1..1..0....0..1..1..1..1..1..1..1..1
..0..0..0..0..0..0..0..1..0....1..1..1..1..1..1..1..1..1
..0..0..0..0..0..0..1..1..1....1..1..1..1..1..1..1..1..1
CROSSREFS
Cf. A202461.
Sequence in context: A237680 A262819 A094497 * A262820 A262817 A250821
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 19 2011
STATUS
approved