login
A202457
Number of (n+2) X 6 binary arrays with consecutive windows of three bits considered as a binary number nondecreasing in every row and column.
1
1331, 2835, 5735, 10918, 19614, 33468, 54618, 85779, 130333, 192425, 277065, 390236, 539008, 731658, 977796, 1288497, 1676439, 2156047, 2743643, 3457602, 4318514, 5349352, 6575646, 8025663, 9730593, 11724741, 14045725, 16734680
OFFSET
1,1
COMMENTS
Column 4 of A202461.
LINKS
FORMULA
Empirical: a(n) = (1/120)*n^6 + (17/40)*n^5 + (27/4)*n^4 + (1195/24)*n^3 + (22769/120)*n^2 + (28277/60)*n + 613.
Conjectures from Colin Barker, May 31 2018: (Start)
G.f.: x*(1331 - 6482*x + 13841*x^2 - 16277*x^3 + 10983*x^4 - 4003*x^5 + 613*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=5:
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..1..0..0
..0..0..0..0..0..0....0..0..0..0..1..0....0..0..0..0..0..0....0..0..0..1..0..0
..0..0..0..0..0..0....0..0..0..0..1..1....0..0..0..0..1..0....0..0..0..1..0..0
..0..0..0..0..0..0....0..0..0..0..1..1....0..0..0..0..1..0....0..0..0..1..1..0
..0..0..0..1..0..1....0..0..0..0..1..1....0..0..0..1..1..0....0..0..0..1..1..1
..0..0..0..0..1..0....0..0..0..0..1..1....0..0..0..1..1..0....0..0..0..1..1..1
..0..0..1..1..1..1....0..1..1..1..1..1....0..0..0..0..1..0....0..0..1..1..1..1
CROSSREFS
Cf. A202461.
Sequence in context: A182371 A252258 A038677 * A252347 A295900 A030100
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 19 2011
STATUS
approved