%I
%S 729,1194,1876,2835,4137,5854,8064,10851,14305,18522,23604,29659,
%T 36801,45150,54832,65979,78729,93226,109620,128067,148729,171774,
%U 197376,225715,256977,291354,329044,370251,415185,464062,517104,574539,636601,703530
%N Number of (n+2) X 4 binary arrays with consecutive windows of three bits considered as a binary number nondecreasing in every row and column.
%C Column 2 of A202461.
%H R. H. Hardin, <a href="/A202455/b202455.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/4)*n^4 + (15/2)*n^3 + (229/4)*n^2 + 237*n + 427.
%F Conjectures from _Colin Barker_, May 31 2018: (Start)
%F G.f.: x*(729  2451*x + 3196*x^2  1895*x^3 + 427*x^4) / (1  x)^5.
%F a(n) = 5*a(n1)  10*a(n2) + 10*a(n3)  5*a(n4) + a(n5) for n>5.
%F (End)
%e Some solutions for n=4:
%e ..0..0..0..0....0..0..0..0....0..1..0..0....0..0..0..0....0..0..0..0
%e ..0..1..1..1....0..0..0..0....0..1..0..0....0..0..0..0....0..0..1..0
%e ..0..1..1..1....0..0..0..0....0..1..0..0....0..0..0..0....0..0..1..0
%e ..1..1..1..1....0..1..0..1....0..1..1..0....0..0..0..0....0..1..1..0
%e ..1..1..1..1....0..0..1..1....0..1..0..0....0..0..1..0....0..1..1..1
%e ..0..1..1..1....0..0..1..1....1..1..1..1....0..0..0..1....1..1..1..1
%Y Cf. A202461.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 19 2011
