

A202362


Initial prime in prime decuplets (p+0,2,6,12,14,20,24,26,30,32) preceding the maximal gaps in A202361.


1



9853497737, 22741837817, 242360943257, 1418575498577, 4396774576277, 8639103445097, 11105292314087, 12728490626207, 119057768524127, 226608256438997, 581653272077387, 896217252921227, 987041423819807, 1408999953009347, 1419018243046487, 2189095026865907
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Prime decuplets (p+0,2,6,12,14,20,24,26,30,32) are one of the two types of densest permissible constellations of 10 primes. Maximal gaps between decuplets of this type are listed in A202361; see more comments there.


REFERENCES

Hardy, G. H. and Littlewood, J. E. "Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes." Acta Math. 44, 170, 1923.


LINKS

Table of n, a(n) for n=1..16.
T. Forbes, Prime ktuplets
Eric W. Weisstein, kTuple Conjecture
Alexei Kourbatov, Maximal gaps between prime ktuples


EXAMPLE

The gap of 12102794130 between the very first decuplets starting at p=9853497737 and p=21956291867 means that the initial term is a(1)=9853497737. The next gap after the decuplet starting at p=21956291867 is smaller, so it does not contribute to this sequence. The next gap of 141702673770 between the decuplets at p=22741837817 and p=164444511587 is a new record; therefore the next term is a(2)=22741837817.


CROSSREFS

Cf. A027570 (prime decuplets p+0,2,6,12,14,20,24,26,30,32), A202361
Sequence in context: A022251 A015385 A027570 * A204058 A154532 A157745
Adjacent sequences: A202359 A202360 A202361 * A202363 A202364 A202365


KEYWORD

nonn


AUTHOR

Alexei Kourbatov, Dec 18 2011


STATUS

approved



