login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of x > 0 satisfying e*x + 1 = exp(x).
2

%I #26 Sep 14 2023 06:10:59

%S 1,7,5,0,7,8,6,7,2,2,6,8,0,1,4,6,3,6,7,5,7,0,0,1,4,8,7,7,2,5,5,3,3,2,

%T 8,9,4,1,3,7,8,6,6,3,4,9,4,0,8,2,6,8,4,9,0,8,0,5,9,4,5,7,5,6,1,6,0,8,

%U 4,7,8,6,1,9,5,5,1,7,3,2,0,6,4,9,0,1,6,9,1,4,7,2,5,8,0,3,7,0,8

%N Decimal expansion of x > 0 satisfying e*x + 1 = exp(x).

%C See A202320 for a guide to related sequences. The Mathematica program includes a graph.

%H G. C. Greubel, <a href="/A202350/b202350.txt">Table of n, a(n) for n = 1..10000</a>

%F Equals -LambertW(-1, -1/exp(1+1/e)) - 1/e. - _Andrea Pinos_, Sep 12 2023

%e x = 1.750786722680146367570014877255332...

%t u = E; v = 1;

%t f[x_] := u*x + v; g[x_] := E^x

%t Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, 1.7, 1.8}, WorkingPrecision -> 110]

%t RealDigits[r] (* A202350 *)

%t (* alternate program *)

%t RealDigits[(-1 - E*ProductLog[-1, -E^(-1-1/E)])/E, 10, 99] // First (* _Jean-François Alcover_, Feb 27 2013 *)

%Y Cf. A001113, A202320.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Dec 17 2011