login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of x < 0 satisfying x + e = exp(x).
3

%I #13 Nov 10 2017 09:55:14

%S 2,6,4,7,4,5,0,2,4,2,0,4,9,9,6,6,7,2,0,7,2,7,2,0,1,2,2,2,1,4,6,4,1,5,

%T 2,4,3,5,5,9,2,9,7,3,7,7,0,8,0,1,9,6,6,8,3,0,5,4,0,3,2,2,2,7,8,8,5,8,

%U 1,1,9,4,6,0,7,5,9,2,2,7,8,4,5,5,2,1,4,9,0,3,3,5,7,2,7,8,8,0,3

%N Decimal expansion of x < 0 satisfying x + e = exp(x).

%C See A202320 for a guide to related sequences. The Mathematica program includes a graph.

%H G. C. Greubel, <a href="/A202347/b202347.txt">Table of n, a(n) for n = 1..10000</a>

%F Equals -exp(1) - lambertw(-exp(-exp(1)). - _G. C. Greubel_, Nov 09 2017

%e x < 0: -2.64745024204996672072720122214641524...

%e x > 0: 1.420370118020083458458421283899772980...

%t u = 1; v = E;

%t f[x_] := u*x + v; g[x_] := E^x

%t Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110]

%t RealDigits[r] (* A202347 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

%t RealDigits[r] (* A104689 *)

%t RealDigits[-E - LambertW[-Exp[-E]], 10, 100][[1]] (* _G. C. Greubel_, Nov 09 2017 *)

%o (PARI) solve(x=-3, 0, exp(x)-exp(1)-x) \\ _Michel Marcus_, Nov 09 2017

%Y Cf. A202320.

%K nonn,cons

%O 1,1

%A _Clark Kimberling_, Dec 17 2011