OFFSET
1,1
COMMENTS
The sequence is finite because the restricted sum of divisors of n, for n composite, is at least sqrt(n), while the sum of the cubes of the digits of n is at most 9^3*log_10(n+1). - Giovanni Resta, Oct 05 2018
FORMULA
EXAMPLE
160 is in the sequence because 1^3 + 6^3 + 0^3 = 217, and the sum of the divisors 1< d<160 is 2 + 4 + 5 + 8 + 10 + 16 + 20 + 32 + 40 + 80 = 217.
MAPLE
A055012 := proc(n)
add(d^3, d=convert(n, base, 10)) ;
end proc:
A048050 := proc(n)
if n > 1 then
numtheory[sigma](n)-1-n ;
else
0;
end if;
end proc:
isA202279 := proc(n)
end proc:
for n from 1 do
if isA202279(n) then
printf("%d, \n", n);
end if;
end do; # R. J. Mathar, Dec 15 2011
MATHEMATICA
Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]^3]]; Select[Range[2, 5*10^7], Q]
Select[Range[1000000], DivisorSigma[1, #]-#-1==Total[IntegerDigits[#]^3]&] (* Harvey P. Dale, Jul 19 2014 *)
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
Michel Lagneau, Dec 15 2011
STATUS
approved