The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202210 G.f.: A(x) = ( Sum_{n>=0} 3^n*(2*n+1) * x^(n*(n+1)/2) )^(1/3). 3
 1, 3, -9, 60, -360, 2457, -18036, 138429, -1093500, 8833140, -72622224, 605563452, -5108366277, 43512281460, -373690245420, 3232056818511, -28126143258444, 246080268205092, -2163254305208580, 19097478037041840, -169235311045503708, 1504837859547132468 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to the q-series identity: eta(x)^3 = Sum_{n>=0} (-1)^n*(2*n+1) * x^(n*(n+1)/2), where eta(x) is the Dedekind eta(q) function without the q^(1/24) factor. LINKS EXAMPLE G.f.: A(x) = 1 + 3*x - 9*x^2 + 60*x^3 - 360*x^4 + 2457*x^5 - 18036*x^6 +... where A(x)^3 = 1 + 9*x + 45*x^3 + 189*x^6 + 729*x^10 + 2673*x^15 + 9477*x^21 +...+ 3^n*(2*n+1)*x^(n*(n+1)/2) +... PROG (PARI) {a(n)=polcoeff(sum(m=0, sqrtint(2*n+1), 3^m*(2*m+1)*(x)^(m*(m+1)/2)+x*O(x^n))^(1/3), n)} CROSSREFS Cf. A193236. Sequence in context: A261244 A018504 A140812 * A243425 A018513 A143761 Adjacent sequences:  A202207 A202208 A202209 * A202211 A202212 A202213 KEYWORD sign AUTHOR Paul D. Hanna, Dec 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 22:01 EDT 2020. Contains 336256 sequences. (Running on oeis4.)