login
A202109
a(n) = n^3*(n+1)^3*(n+2)^3/72.
1
3, 192, 3000, 24000, 128625, 526848, 1778112, 5184000, 13476375, 31944000, 70180968, 144685632, 282589125, 526848000, 943296000, 1630015488, 2729559627, 4444632000, 7057911000, 10956792000, 16663911033, 24874409472, 36501000000, 52728000000, 75075609375
OFFSET
1,1
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, p. 162.
LINKS
Pedro A. Piza, Powers of sums and sums of powers, Math. Mag. 25 (3) (1952) 137.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = 3*(Sum_{k=1..n} k*(k+1)/2)^3.
a(n) = 3*A000292(n)^3.
a(n) = Sum_{k=1..n} A000217(k)^3+2*A000217(k)^4.
G.f.: 3*x*(1+54*x+405*x^2+760*x^3+405*x^4+54*x^5+x^6) / (x-1)^10. - R. J. Mathar, Dec 13 2011
From Amiram Eldar, Apr 09 2024: (Start)
Sum_{n>=1} 1/a(n) = 261/4 - 54*zeta(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 135*zeta(3)/2 + 432*log(2) - 1521/4. (End)
MATHEMATICA
Array[#^3*(#+1)^3*(#+2)^3/72 &, 50] (* Paolo Xausa, Apr 07 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Martin Renner, Dec 11 2011
STATUS
approved