login
A202091
Number of partitions of 5n such that cn(1,5) = cn(4,5) and cn(2,5) = cn(3,5).
0
1, 3, 11, 32, 88, 221, 532, 1213, 2672, 5676, 11724, 23568, 46315, 89076, 168124, 311763, 569000, 1023128, 1814776, 3178000, 5499588, 9411392, 15938221, 26726372, 44402336, 73121988, 119418609, 193488816, 311150404, 496783420, 787753316
OFFSET
0,2
COMMENTS
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A046776(n) + A202086(n) + A202088(n) + 2*( A036886(n) + A036892(n) + A036893(n) + A036894(n) + A036895(n) )
a(n) = A202192(n) + 2*( A036886(n) + A036892(n) + A036893(n) + A036894(n) + A036895(n) )
KEYWORD
nonn
AUTHOR
Max Alekseyev, Dec 11 2011
STATUS
approved