login
A202079
Number of arrays of 8 integers in -n..n with sum zero and the sum of every adjacent pair being odd.
1
12, 524, 5832, 34632, 142692, 462436, 1264272, 3044496, 6644604, 13406844, 25370840, 45516120, 78055380, 128783316, 205485856, 318414624, 480831468, 709627884, 1026024168, 1456353128, 2032933188, 2795035716, 3789951408
OFFSET
1,1
COMMENTS
Row 6 of A202076.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8).
Empirical g.f.: 4*x*(1 + x)*(3 + 104*x + 390*x^2 + 104*x^3 + 3*x^4) / (1 - x)^8. - Colin Barker, May 27 2018
EXAMPLE
Some solutions for n=3:
.-3...-2....1...-3....2....2....1....1...-2....2....3...-2....1...-3....3....0
..0....1...-2....0....3....1....0...-2....3....3...-2....3....2....0...-2...-1
..3....2...-1....1....0...-2...-3...-3....2...-2....1....2....3....3...-3....0
..0...-1...-2....2...-3....1....0...-2...-1...-3....0...-1...-2...-2....2...-1
..1...-2...-1....3...-2...-2....3....3....2....2....1...-2...-3....3....1....0
.-2...-3....0...-2...-1...-1...-2....2...-3...-3....2....1....0...-2....0...-3
..1....2....3...-3...-2....2....1....3....2...-2...-3...-2...-3...-1...-3....2
..0....3....2....2....3...-1....0...-2...-3....3...-2....1....2....2....2....3
CROSSREFS
Cf. A202076.
Sequence in context: A198056 A360644 A004801 * A296685 A281030 A282589
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 10 2011
STATUS
approved