login
A202066
Mass of oriented maximal Wicks forms of genus n, multiplied by 6.
3
1, 35, 10010, 8083075, 13013750750, 35098085772750, 142849209095092500, 818490255812606251875, 6283276863788107326893750, 62273556997003931716843956250, 774241472911295609950819376787500, 11801375650850423334675364350683468750, 216435413840342786969740847520096250187500, 4702059365681447046917619912374091035323437500
OFFSET
1,2
LINKS
R. Bacher and A. Vdovina, Counting 1-vertex triangulations of oriented surfaces, Discrete Math. 246 (2002), 13-27.
EXAMPLE
1/6, 35/6, 5005/3, 8083075/6, 6506875375/3, 5849680962125, 23808201515848750, 272830085270868750625/2, 3141638431894053663446875/3, 31136778498501965858421978125/3, ...
MAPLE
m1:=g->2*(1/12)^g*(6*g-5)!/(g!*(3*g-3)!);
s1:=[seq(m1(g), g=1..50)]:
s1a:=[seq(numer(m1(g)), g=1..50)]; #A202067
s1b:=[seq(denom(m1(g)), g=1..50)]; #A202068
s2:=[seq(6*m1(g), g=1..20)]: #A202066
MATHEMATICA
m1[g_] := 2 (1/12)^g (6g-5)! / (g! (3g-3)!);
s1 = Table[m1[g], {g, 1, 50}]
s1a = Table[Numerator[m1[g]], {g, 1, 50}]; (* A202067 *)
s1b = Table[Denominator[m1[g]], {g, 1, 50}]; (* A202068 *)
s2 = Table[6 m1[g], {g, 1, 20}]; (* A202066 *) (* Jean-François Alcover, Sep 05 2018, from Maple *)
CROSSREFS
Sequence in context: A249888 A212025 A316940 * A271071 A249889 A030261
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 10 2011
STATUS
approved